

Final Project – Autonomous Mobile Robot

Navigation in Manufacturing and Warehousing

Dean Rogers

College of Engineering and

Mines

University of North Dakota

Grand Forks ND, USA

dean.rogers@und.edu

Abstract—The purpose of this project was to develop a basic

solution for using mobile robots in manufacturing and

warehousing applications to reduce manpower requirements for

material handling, picking, and internal transportation. This

project uses a small two-wheeled mobile robot with a 360-degree

LIDAR scanner mounted on it to generate a map of the area and

navigate to a specified location. The algorithm developed uses the

LIDAR scanner to obtain 2D range data which is then passed

through a cluster analysis to remove noise. That data is then sent

to an occupancy mapping algorithm to generate a map for the path

finding algorithm. Once the robot path has been determined, the

robot drives along the path until it reaches the goal point. While a

feedback algorithm would significantly increase the accuracy of

the robot navigation, the Kalman filter algorithm was not able to

be implemented in this project.

Keywords—LIDAR, occupancy mapping, mapping, localization,

path planning, navigation

I. INTRODUCTION

Autonomous robotics, intelligent machines capable of
performing tasks without explicit human control, require the
input of sensors to provide information about the world around
them in order to make decisions and perform tasks. As the
robots operate in a complex 3D world, sensor data must be
analyzed and matched to the physical world to allow the robot
to navigate effectively.

In the manufacturing and resale industries, there is a flow of
goods through a warehouse. While optimizations can be made
to increase efficiency, such as reducing travel distances and
minimizing retraced steps, there is a limit to the amount of time
that can be saved. Being a fairly simple repetitive process,
picking and transportation of goods in a warehouse could be
further optimized through the use of autonomous mobile
robotics.

By removing the human element in picking and
transportation, cost can be reduced as human labor can be
focused on the more technical or less repetitive tasks such as
assembly or packaging. While human labor is being used to
assemble goods or package orders, an autonomous robot can be
assigned a task and, without human interaction, prepare the
goods required for the next order, allowing the workers to
continue seamlessly. Not only will the save time for the workers
and money in labor for the company, but this can also reduce the

risk of human error. The high repeatability of a task performed
by a robot reduces the time spent correcting mistakes and
increases order accuracy and thus customer satisfaction.

The tasks to be performed by an autonomous mobile robot
in this project are to simulate picking goods from a specified
location and delivering them to another. The robot will start
from a random location, determine where it is, plan a route to
the part location, navigate to that location while avoiding
stationary obstacles, plan a route to the delivery location, and
navigate to that location while avoiding obstacles.

Autonomous mobile robots must use a sensor to determine
their location in their environment and to detect obstacles. Often
used are 2D scanners which provide a set of points in the
horizontal plane that correspond to vertical physical surfaces.
One method of converting this data into a form that can be used
by a robot for path planning is occupancy mapping. By
converting the area scanned into a grid and determining which
cells are likely to be occupied and which are not, path planning
algorithms can use that data to navigate around obstacles and
through a map.

In this project, a basic 360-degree 2D LiDAR scanner was
used to collect the range data. The unit used is the YDLIDAR
X4, a small entry-level scanner with a range of 0.12m to 10m.
The scanner interfaces using a USB cable so the scans can be
read into the provided software for visualization or read with a
program to perform manipulation of the data. To read and work
with the scan results, a Python program was created that makes
use of libraries such as PyLidar3, for connecting to the scanner,
MatPlotLib, for plotting the results, and Pandas, for handling the
data.

II. HARDWARE AND SOFTWARE SETUP

A. Hardware Used

• GoPiGo Robot

o GoPiGo Robot Chassis

o GoPiGo Electronic Board

o Raspberry Pi Computer (3B+)

o DexterOS microSD Card

o Rechargeable Battery

• YDLIDAR X4 LIDAR Scanner

mailto:dean.rogers@und.edu

• USB Battery Pack

• USB-A to USB-C Cable

• USB-A to MicroUSB Cable

B. Lidar Scanner Setup

Before connecting to the LIDAR scanner, it should be

mounted to the robot. If possible, it would be best to drill holes

in the top part of the chassis which correspond to the legs of the

LIDAR scanner, however, if that is not an option, small pieces

of wire can be used to tie the scanner to the holes along the edge

of the top of the chassis. The scanner also requires external

power, so an additional battery pack is required. Mount the

battery pack to the robot and plug the power USB cable into the

battery pack and the power port on the LIDAR scanner. The

physical setup of the robot is shown in Appendix H.

In order to communicate with the YDLIDAR X4 scanner,

the correct serial communication port must be specified in the

code. The robot must be turned on and connected to from a

computer. In the Code > Python section, open a new terminal.

With the scanner plugged in to one of the USB ports on the

RaspberryPi, use the command ‘dmesg | grep tty‘ to find

the port that the scanner is connected to. The port will start with

“tty”, as shown in Fig. 1.

Fig. 1. Ubuntu Terminal - Find LIDAR Serial Port

C. Python Code Setup

For the Python code to run and the LIDAR scanner to be

used, the PyLidar3 library must first be installed on the

RaspberryPi. First try using the command ‘pip install
PyLidar3’ in the terminal. If that does not work, navigate to

the GitHub page for the PyLidar3 library, download the

package, unzip the folder, and upload the files to a file

location on the RaspberryPi. Once uploaded, change the

directory of the terminal to match the directory where the

setup.py file is located for the PyLidar3 library. Then run the

command ‘python3 setup.py install’ in the terminal to

install the library.

With the library installed, create a new Python3 notebook

on the RaspberryPi and paste the code from Appendixes A-G

into it. Change the port variable to match the name determined

in step B and add the prefix “/dev/” to the port name.

III. ALGORITHM IMPLEMENTATION

The algorithm for this project was implemented using

Python in a Jupyter Notebook using the easygopigo3, PyLidar3,

Pandas, Numpy, MatPlotLib, time, and math libraries. The

easygopigo3 library is used to send commands to the robot to

move. The PyLidar3 library is used to send commands to and

receive data from the YDLIDAR X4 scanner. The Pandas

library is used for storing the data and is particularly useful for

manipulating data quickly. The Numpy library is used in

conjunction with the Pandas library to perform manipulations

of the data. MatPlotLib is used to display the graphs of the data.

The time library is used for specifying the scan time of the

LIDAR scanner. The math library is used in calculations done

on the scan data.

A. Import Libraries and Initialize Variables

Before the program starts, all required libraries are

imported, and variables are initialized. While it isn’t always

necessary to do this at the start of the program, it helps keep it

organized and makes modifying the variables easier as the

program gets larger. The code to import the libraries and

initialize the variables is shown in Appendix A.

B. Define Functions

Since the graph search algorithms are recursive, they need

to be set up using functions. The functions for the graph

search algorithms, as well as for plotting the progress of the

algorithms, are defined at the beginning of the program so

they can be used later. Since these functions also use some of

the libraries imported in part A, the functions must be defined

after the libraries are imported. The code defining the

functions is shown in Appendix B.
A recursive function is one that can call itself, which results

in the function being able to be repeated multiple times where
the results of the later iterations can affect the results of the
earlier iterations. This is required in the map search algorithms
since it is possible for the path the algorithm is taking to get
‘stuck’, meaning there aren’t any more unoccupied points it can
move to from the current point, but it hasn’t reached the end
point. Using a recursive function in this scenario allows the
algorithm to retrace its steps and search for other possibilities at
each step until it finds a new path.

1) Breadth-First Search

The breadth-first search works in all directions at

once, by searching all points adjacent to the previous

search points at the same time. This creates multiple search

paths that branch out at each iteration. As the search

spreads out, the number of points searched increases and

spreads out across the map until the end point is reached.

The algorithm then works backward through the path that

reached the end point first. This algorithm weights each

cell evenly, so the resulting path is the shortest path not

including diagonals.

2) Depth-First Search

The depth-first search works on one path at a time,

searching until it either finds the end point, or gets stuck. If

it gets stuck it backtracks and tries to find a new path to

follow. This method creates one path at a time, so once the

end point is reached, it returns the path it was following.

This algorithm weights each cell evenly, but since the

order of the directions it searches in is arbitrary, it may

find the shortest path, excluding diagonals, or it may find

and extraordinarily long path.

3) Directional Depth-First Search

The directional depth-first search uses the same principle

of the depth-first search where a single path is explored at

a time, however, it differs in how it determines which cell

to search next. The depth-first search just uses an arbitrary

setting, such as search down first, then right, then up, then

left. The directional depth-first search, on the other hand,

compares the location of the current point to the end point

and moves in the direction with the greatest distance to go

toward the end point.

C. Perform Scans

The first step in creating an occupancy map is obtaining the
range scan data. The test program provided in the PyLidar3
documentation was modified to fit the needs of the project
better. The serial port was added as a static variable rather than
a prompt. Additionally, the scan time, plot maximum, and
minimum measurement threshold were added as variables. The
scan data is also added into a Pandas DataFrame for use in the
occupancy mapping algorithm. The updated code is shown
Appendix C.

Three parameters are used in the scanning code: Minimum
Distance Threshold, Buffer and Scan Time. The scan time just
specifies how long the scanner runs, changing the number of
scans performed. This value was set to 4 seconds which returns
about seven to 10 scans. This provides additional information
for the cluster analysis and helps remove noise without creating
excess data to analyze. The buffer is simply subtracted from all
the distance measurements to create a buffer around all the
objects detected to help prevent the robot from colliding with the
walls or obstacles.

The Minimum Distance Threshold specifies the minimum
distance between the sensor and the measurement that will be
recorded. The effect of this parameter is shown in Figs 3 and 4.
This parameter essentially removes all data points within a
radius of the origin point. This parameter was set at 200
millimeters as it included as much data as possible, while
removing the noise that appears near the scanner. With the
minimum scanning distance of the YDLIDAR X4 being 120
millimeters, the value selected removes only the points very
close to the minimum which are highly likely to be noise.

Fig. 2. LIDAR Scan with Min Distance Threshold = 200mm

Fig. 3. LIDAR Scan with Min Distance Threshold = 500mm

An additional optimization to increase the accuracy of the

data, and thus the occupancy map, was to drop the first scan
performed. Many of the first scans are full of noise and show
very little of the actual features in the area. This is likely due to
the acceleration of the scanner as it starts up, so once it is
spinning at a constant velocity, the scans are much cleaner. This
can be shown in comparing Fig. 4 to Fig. 5 which are scans 2
and 1 respectively.

Fig. 4. LIDAR Scan - First Scan Showing Excess Noise Due to Scanner

Acceleration

D. Cluster Analysis

In each scan, there are a small number of points that do not
correspond to physical objects in the area scanned. These points
are considered noise and will negatively affect the performance
of the occupancy mapping algorithm by providing false
positives of an object. To help combat this, a cluster analysis is
performed which groups nearby points into cells and removes
points in cells that don’t contain enough points.

While this method alone is fairly effective, it can have issues
if noise is concentrated in a certain area on a scan, or if objects
that are further away from the sensor have points on a line but
spread out. In the first scenario, the dense cluster of noise may
not get removed if it doesn’t fall below the threshold. In the
second scenario, valid points can be removed when they are
spread apart and fall below the threshold. To help prevent these

two issues, multiple scans are taken while keeping the scanner
stationary. These scans are then stacked on top of each other,
and the point clouds of the actual objects get denser, while the
noise stays sparse as it is random. The Python code to perform
the cluster analysis can be found in Appendix D.

The cluster analysis algorithm uses two parameters: Cluster
Grid Size, and Cluster Threshold. The grid size parameter
specifies the size of the grid squares used to group the data
points. Larger grid sizes tend to reduce the number of points
removed as noise, while smaller grid sizes increase the number
of points removed. This is shown in Figs 6, 7, and 8. The grid
size selected for this exercise was 0.1 meters for this
environment; the ideal grid size could change depending on the
overall size, complexity, or noise of the environment being
scanned.

Fig. 5. Cluster Analysis - Grid Size=0.01m, Cluster Threshold=0.7

Fig. 6. Cluster Analysis - Grid Size=0.1m, Cluster Threshold=0.7

Fig. 7. Cluster Analysis - Grid Size=0.5m, Cluster Threshold=0.7

Fig. 8. Cluster Analysis Heatmap - Grid Size=0.01m

Fig. 9. Cluster Analysis Heatmap - Grid Size=0.1m

The second parameter used in the cluster analysis is the
Cluster Threshold. This specifies the minimum ratio of points in
a cell to the number of scans included in the cluster analysis. The
higher this ratio, the more points get removed as noise. The
value selected for this exercise is 0.5, which removes a good
portion of the noise. It does leave some of the noise, however,
increasing this threshold starts to remove points that are correct.
Additionally, the occupancy mapping algorithm is able to
remove some noise so the noise that is left doesn’t affect the
result significantly. The effect of the Cluster Threshold is shown
in Figs 11, 12, and 13.

Fig. 10. Cluster Analysis - Grid Size=0.1m, Cluster Threshold=0.1

Fig. 11. Cluster Analysis - Grid Size=0.1m, Cluster Threshold=0.5

Fig. 12. Cluster Analysis - Grid Size=0.1m, Cluster Threshold=1

E. Occupancy Mapping

 To generate the occupancy map, a grid is created that
encompasses the overall size of the scanned area. Two values
are stored for each cell in the grid, 𝑀 and 𝐶. 𝑀 is the evidence
of the cell being occupied, and 𝐶 is the number of times the cell
has been observed.

 To populate this grid, each measurement is analyzed
individually. The 𝑀 and 𝐶 values of the cell that contains the
measurement location get incremented. For all the cells that the
light beam would have passed through to reach to measurement
location, the 𝑀 value is decremented while the 𝐶 value is
incremented. The concept is, the higher the value of the 𝑀/𝐶
value for a cell, the more likely it is to be occupied. A threshold
can then be used to specify which cells are considered occupied
and which are not.

 This algorithm was implemented using a Pandas DataFrame
to hold the list of cells, their locations, and their 𝑀 and 𝐶 values.
This was then joined with a DataFrame containing all the
measurements such that all measurements are compared to all
cells. Then the distances between the measurement and the cell
center, and the measurement path and the cell center are
calculated. Based on a distance threshold, the 𝑀 and 𝐶 values
for each cell are incremented, decremented, or ignored. The
occupancy mapping Python script is included in Appendix E.

 Other common algorithms for incremental occupancy
mapping, such as Bresenham’s Line and ray marching, work by
traversing the ray path from the query point to the measurement
location [1]. These methods would require an iterative solution
which, especially over large datasets, is time-consuming. Even
though the method implemented in this exercise requires larger
datasets to compare every cell location to every measurement, it
does not require iterative solution and remains suitably fast.

 Three parameters are used to control the occupancy mapping
algorithm: Tessellation Grid Size, Ray Cast Threshold, and
Occupancy Threshold.

1) Tessellation Grid Size
 The Tessellation Grid Size, much like the Cluster Grid
Size, specifies the size of the cells that the area is split into.
Decreasing the size can help increase the accuracy of the

location of detected objects, however, it can increase the
opportunity for false negatives in certain situations. The
effect of changing the Tessellation Grid Size is shown in
Figs 14, 15, and 16. The Tessellation Grid Size value was
chosen to be 0.08 meters for this exercise as it provided the
best resolution while keeping gaps to a minimum.

Fig. 13. Occupancy Probability Map - Tessellation Grid Size=0.04m

Fig. 14. Occupancy Probability Map - Tessellation Grid Size=0.08m

Fig. 15. Occupancy Probability Map - Tessellation Grid Size=0.2m

2) Ray Cast Threshold
 The method of determining which cells the ray of light,
used to measure each distance, passed through is called ray
casting. This determines that the cells the ray passed through
are empty and the cell where the object was found, and thus
a measurement returned, is occupied.

 While calculating exactly which cells each ray passed
through would provide the most accurate results, it would be
too computationally expensive. Instead, the rays are
considered to pass through a cell if they come within a
certain radius of the center of the cell. That radius is the Ray
Cast Threshold. The effects of the Ray Cast Threshold are
shown in Figs 17, 18, and 19. The value chosen for this
exercise was setting the Ray Cast Threshold equal to twice
the Tessellation Grid Size to provide a buffer between
obstacles and the path generated for the robot. This provides
some overlap between cells which can help close some gaps
but may also reduce the certainty of some cells. As can be
seen in Fig. 17, too small a value causes many false
negatives, while Fig. 19 shows how too large a value creates
many false positives.

Fig. 16. Occupancy Threshold Map – Ray Cast Threshold = Half the

Tessellation Grid Size

Fig. 17. Occupancy Threshold Map – Ray Cast Threshold = Tessellation Grid

Size

Fig. 18. Occupancy Threshold Map – Ray Cast Threshold = Twice the

Tessellation Grid Size

3) Occupancy Threshold
 While the probability map can be useful as, in uncertain
areas it would provide the robot a place to investigate further
to increase the certainty of occupancy, it is also helpful in
path planning to have a threshold which determines if each
cell is to be considered occupied. This can be visualized by
comparing Figs 14 – 16 to 17 – 19. Figs 14 – 16 show the
probability of each cell as a shade of gray, such the maps
have a fading effect near objects, while in Figs 17 – 19
unoccupied cells are white, occupied cells are black, and
uncertain cells are a single shade of gray.

 The effect of changing the Occupancy Threshold is
shown in Figs 20, 21, and 22. The value can only be between
-1 and 1, where -1 is completely unoccupied and 1 is
completely occupied. For this exercise, the Occupancy
Threshold was chosen to be -0.3 which provides the most
complete occupancy map without including many false
positives.

Fig. 19. Occupancy Threshold Map - Occupancy Threshold = -0.6

Fig. 20. Occupancy Threshold Map - Occupancy Threshold = -0.3

Fig. 21. Occupancy Threshold Map - Occupancy Threshold = 0.4

F. Path Planning

The path planning algorithm used in this project is the

breadth-first search due to its consistency and how the paths it

generates have minimal turns for the robot to perform. The

breadth-first algorithm provides very consistent results where,

if every cell is considered to require the same distance

travelled, it finds the shortest route possible. This algorithm

tends to form an L-shaped path, where the path moves out

from the start point then turns left to the goal point. This is due

to the order of checking for available points in the algorithm.

Fig. 22. Breadth-First Search - Start=(3,23) End=(26,17)

The algorithm considers uncertain spaces as available so it

can plot a path through them and while it could be made safer

by preventing that, on larger maps that could mean that the

algorithm isn’t able to find a solution where there are areas

outside of the vision of the sensor. This does mean that the

algorithm can create impossible paths such as the one shown

in Fig. 22. In the figures, the blue cells are cells that were

visited by the algorithm and the red cells are the path

determined by the algorithm. The definition of the path

planning function is shown in Appendix B. and the execution

of the path planning algorithm is shown in Appendix F.

Fig. 23. Breadth-First - Start=(3,23) End=(15,36)

G. Navigation

To navigate, each step in the path generated by the path

planning algorithm is compared to the current state of the

robot. First, the angle is determined and if different than the

current robot angle, the robot turns to match the required

angle. Then the location is compared and if it is different the

robot moves in a straight line forward to the next point. The

code for this is shown in Appendix G.

IV. ALGORITHM RESULTS

 Up to the navigation step, algorithm provides a sufficient
level of accuracy to assist with basic robot navigation, however,
without a robot localization algorithm to act as a feedback loop,
the navigation of the robot is not accurate. As the robot travels,
it gets slightly off course, so each further movement generally
takes it further off course.

 The LIDAR scanner is adequate for basic robot navigation
but did have some issues that negatively affect the results of the
algorithm. First, the first scan performed is often full of noise
and must be discarded. Second, every scan has random noise and
many of the scans had repetitive noise. While the random noise
can usually be removed with multiple scans passed through a
cluster analysis, the repetitive noise was not removed. This is
shown near the center of the area in Fig. 7. This noise could be
caused by ambient light in the environment.

 In the occupancy mapping algorithm, there are some false
negatives in areas where the measurements are more spread
apart such as along walls that are approaching parallel with the
sensor beam. This causes a large change in linear distance

between measurements with only a small angle change. This is
shown on the left side of the top wall in Fig 12. These false
negatives could potentially be remedied with a continuous
occupancy mapping scheme was being used which could update
low-confidence areas as the robot moved around the area. Using
this process would change the optimal values of many of the
parameters.

 Since the Kalman filter is not functional, the navigation in
this project is simply done from the initial path plan. This does
result in inaccuracy as the robot is not able to drive the exact
distance or turn to the exact angle specified, especially since the
experiment is performed on carpet which causes significant
variance in the actual distance moved. Some testing was
performed to determine the relationship between the distance or
angle sent to the robot and the actual distance or angle moved,
and both relations came out to be almost the same. For
simplicity, both the turn and drive commands used the same
mapping equation. This method performs relatively well,
however, as distance traveled is increased the error in the
navigation is increased. Additionally, there is not obstacle
avoidance implemented on the robot due to the lack of a
functional Kalman filter to localize the robot to determine a new
path around the new obstacle.

 The Kalman filter, which uses statistical analysis to match
extracted lines from 2D scan data to a predefined map, would
allow for significantly more accurate robot navigation. As the
robot moves, additional scans could be performed which, when
passed through the Kalman filter, could determine the robot’s
new location with a certain degree of certainty, and a new path
to the goal point could be planned. This allows for significant
correction of error introduced in the environment.

V. CONCLUSION AND FUTURE WORK

The method of scanning and pre-processing the data works
well and cleans up most of the noise that appears in the scan
data. This helps improve the accuracy of the rest of the
algorithms that use the data. While there are other methods for
cluster analysis, this relatively simple method is sufficient for
this application.

While the iterative method for creating an occupancy map
implemented in this exercise provides sufficient results for basic
robot navigation and obstacle avoidance, more complex
statistical methods demonstrate significantly more accurate

results. One such method, called the Gaussian Process (GP), has
multiple advantages such as the ability to introduce
dependencies between data points and therefore generate maps
from relatively noisy or sparse data, as well as producing a
variance plot which can highlight areas that require additional
exploration by the robot. To help optimize the existing program,
a set of KPIs (Key Performance Indicators) could be introduced.
By comparing a pre-existing map to the occupancy map
generated, the accuracy of the algorithm could be greatly
increased by programmatically updating the parameters and
comparing the KPIs. Some potential KPIs could include True
Positive Rate, False Positive Rate, Precision, and False
Discovery Rate. [2, 3]

The path planning algorithm has significant opportunity for
improvement. The current algorithm, the breadth-first search,
only creates paths consisting of vertical and horizontal lines. In
most cases, there is a significantly shorter path between the
starting and ending points if the robot was to travel along a
diagonal. This method would be difficult to implement in the
breadth-first search, but an adaptation of the depth-first search
algorithm might be able to produce diagonal lines by analyzing
the results of the algorithm and extracting diagonal lines from
the resulting path.

The navigation of the robot in this project presents the
greatest opportunity for improvement. Without the
implementation of robot localization, the robot navigation will
always be inaccurate regardless of the accuracy of the path
planned and the precision of the robot. External factors affect
how the robot moves and create at minimum small inaccuracies
in the robot’s movements. The implementation of the Kalman
filter, while not perfect, would at least allow significant
inaccuracies to be corrected by localizing the robot throughout
its path and correcting the path where needed.

REFERENCES

[1] C. Walsh and S. Karaman, “CDDT: Fast approximate 2d Ray casting for

accelerated localization,” arXiv.org, 07-Mar-2018. [Online]. Available:
https://arxiv.org/abs/1705.01167. [Accessed: 20-Nov-2021].

[2] S. T. O’Callaghan and F. T. Ramos, “Gaussian process occupancy
maps,” The International Journal of Robotics Research, vol. 31, no. 1, pp.
42–62, 2012.

[3] P. Markiewicz and J. Porębski, “Developing occupancy grid with
automotive simulation environment,” Applied Sciences, vol. 10, no. 21,
p. 7629, 2020.

Appendix

A. Python Code to Import Libraries and Initialize Variables

from easygopigo3 import EasyGoPiGo3
import PyLidar3
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
import time
import math

tess_grd_size = 0.08 # meters
ray_cast_thresh = tess_grd_size*2
occ_thresh = -0.3 # Number between -1 and 1
clust_grd_size = 0.1 # meters
clust_thresh = 0.5 # ratio points in cell / # of scans
scan_time = 4 # seconds
buff = 0.05 # meters
port = "/dev/ttyUSB0" # Serial Port that the LIDAR is connected to
min_thresh = 0.200 # meters
scanNum = 0
scans = pd.DataFrame(columns=["scanNum","x","y","grd_x","grd_y"])
x = np.zeros((360))
y = np.zeros((360))

B. Python Code to Define Functions

def equiv(angle):
 if isinstance(angle, pd.Series):
 equiv = pd.DataFrame(columns=['angle'], data = angle)
 equiv.loc[(((np.absolute(equiv['angle'])/np.pi) % 2) > 1), 'equiv'] = -1*(-
np.absolute(equiv['angle']) % np.pi)*np.sign(equiv['angle'])
 equiv.loc[(((np.absolute(equiv['angle'])/np.pi) % 2) <= 1) &
(np.absolute((np.absolute(equiv['angle']) % (2*np.pi)) - np.pi) < 0.000001), 'equiv'] =
np.pi*np.sign(equiv['angle'])
 equiv.loc[(((np.absolute(equiv['angle'])/np.pi) % 2) <= 1) &
(np.absolute((np.absolute(equiv['angle']) % (2*np.pi)) - np.pi) >= 0.000001), 'equiv'] =
(np.absolute(equiv['angle']) % np.pi)*np.sign(equiv['angle'])
 return equiv['equiv']
 else:
 equiv = -1*(-np.absolute(angle) % np.pi)*np.sign(angle) if ((np.absolute(angle)/np.pi)
% 2)>1 else (np.pi if (np.absolute(angle) % (2*np.pi)) == np.pi else (np.absolute(angle) %
np.pi))*np.sign(angle)
 return equiv

def plotHeatmaps(heatmap1, color1, data2=[], color2='bwr', data3=[], color3='autumn',
title="Heatmap", xlabel="x", ylabel="y"):
 heatmap2 = np.zeros([len(heatmap1), len(heatmap1)])
 heatmap3 = np.zeros([len(heatmap1), len(heatmap1)])

 for i in range(0, len(data2)):
 heatmap2[data2[i][0],data2[i][1]] = 1

 for j in range(0, len(data3)):
 heatmap3[data3[j][0],data3[j][1]] = 1

 heatmap2 = np.ma.masked_where(heatmap2 < 0.1, heatmap2)
 heatmap3 = np.ma.masked_where(heatmap3 < 0.1, heatmap3)
 plt.imshow(heatmap1, cmap=color1)
 plt.imshow(heatmap2, cmap=color2, interpolation='none')
 plt.imshow(heatmap3, cmap=color3, interpolation='none')
 plt.title(title)
 plt.xlabel(xlabel)
 plt.ylabel(ylabel)
 plt.show()

def bfs(graph, start, end, visited=[], path=[], level=0, showPlots=False): # Breadth-First
Search
 # Returns a (i,j)x2x2 jagged array: [Path (2xi), Cells Visited (2xj)]
 # graph: a (nxm) 2D array of 0's and 1's
 # start: coordinates of the start points in the graph. Size nx2.
 # end: coordinates of the end point in the graph. Size 1x2.
 # visited: a list of the points within the graph that have been visited
 # path: a list of the iteration number and points, and each of their previous points,
passed through to reach the start point. Size nx5

 nextStart = []
 fnd = False

 try:
 len(start[0])
 except:

 raise Exception("'start' array must be two-dimensional")

 if len(visited) == 0:
 visited.append(start[0])
 if showPlots:
 plotHeatmaps(graph, 'Greys', data2=visited, data3=[visited[0],end], title='Breadth-
First Search')

 for i in range(0, len(start)):
 for j in range(0,4):
 if j == 0:
 p = [start[i][0]+1,start[i][1]]
 elif j == 1:
 p = [start[i][0],start[i][1]+1]
 elif j == 2:
 p = [start[i][0]-1,start[i][1]]
 elif j == 3:
 p = [start[i][0],start[i][1]-1]

 if p[0] >= 0 and p[1] >= 0 and p[0] < len(graph) and p[1] < len(graph[0]):
 avail = True
 if len(visited) > 0:
 for k in range(0, len(visited)):
 if visited[k][0] == p[0] and visited[k][1] == p[1]:
 avail = False

 if graph[p[0]][p[1]] > 0:
 avail = False

 if avail:
 fnd = True
 path.append([level, start[i][0], start[i][1], p[0], p[1]])
 nextStart.append(p)
 visited.append(p)

 if p == end:
 curr = end
 for k in range(len(path)-1, -1, -1):
 if path[k][3:5] == curr:
 curr = path[k][1:3]
 else:
 del path[k]
 for l in path:
 del l[0:3]
 return path, visited

 if not fnd:
 return path, visited
 bfs(graph, nextStart, end, visited, path, level+1, showPlots=showPlots)
 return path, visited

C. Python Code to Perform and Record the LIDAR Scans

dataSource = input('Enter how the data should be obtained (File/Scan):')
if dataSource == 'File':
 scans = pd.read_csv (r'ScanData.csv')
elif dataSource == 'Scan':
 Obj = PyLidar3.YdLidarX4(port)
 if(Obj.Connect()):
 print(Obj.GetDeviceInfo())
 scans = pd.DataFrame(columns=["scanNum","rho","theta","x","y","grd_x","grd_y"])
 gen = Obj.StartScanning()
 t = time.time() # start time
 while (time.time() - t) < scan_time: # scan for specified amount of time
 data = next(gen)
 scanNum +=1
 for angle in range(0,360):
 data[angle] = data[angle] / 1000.0
 if scanNum != 1:
 if(data[angle]>min_thresh):
 x[angle] = (data[angle] - buff) * math.sin(math.radians(angle))
 y[angle] = (data[angle] - buff) * math.cos(math.radians(angle))
 else:
 x[angle] = 0
 y[angle] = 0

 newRow = {
 'scanNum':scanNum,
 'rho':data[angle],
 'theta':angle,
 'x':x[angle],
 'y':y[angle],
 'grd_x':0,
 'grd_y':0
 }
 scans = scans.append(newRow, ignore_index=True)
 Obj.StopScanning()
 Obj.Disconnect()

 scans.to_csv(r'ScanData.csv', index=False)

 for i in range(scanNum-1):
 plotData = scans[scans.scanNum == i+2]
 plotData = plotData[['x','y']]
 plt.figure(i+2)
 plt.plot(plotData.x, plotData.y, 'r*')
 plt.plot(0, 0, 'b*')
 plt.axis("equal")
 plt.xlabel("x (mm)")
 plt.ylabel("y (mm)")
 plt.legend(['Scan Data','Robot Location'])
 plt.title("Scan "+str(i+2))
 else:
 Obj.Disconnect()
 print("Error connecting to device")

else:
 print("Invalid Entry, please type one of: 'File' or 'Scan'")

D. Python Code to Perform Cluster Analysis

mx = scans.max()
scans = scans[scans['scanNum']==mx['scanNum']].reset_index(drop=True)
mx = scans.max()
mn = scans.min()
maxs = pd.DataFrame({'mx':[abs(mx['x']), abs(mn['x']), abs(mx['y']), abs(mn['y'])]})
grid_size = math.ceil(maxs.max()[0]/(clust_grd_size))

scans['grd_x'] = np.floor(scans.x/(clust_grd_size))
scans['grd_y'] = np.floor(scans.y/(clust_grd_size))

numScansDF = scans.groupby(['scanNum']).x.count().reset_index()
numScans = numScansDF.scanNum.count()

grd = scans.groupby(['grd_x','grd_y']).x.count().reset_index()
grd = grd[(grd.grd_x != 0) | (grd.grd_y != 0)]
grd.rename(columns={'x':'numPoints'}, inplace=True)

Remove Datapoints below Threshold
scansCorr = pd.merge(scans, grd, on=['grd_x','grd_y'])
noise = scansCorr[scansCorr.numPoints/numScans <= clust_thresh].reset_index(drop=True)
scansCorr = scansCorr[scansCorr.numPoints/numScans > clust_thresh].reset_index(drop=True)

Plot Data Correction
plt.figure(1)
plt.plot(scansCorr.x, scansCorr.y, 'r*')
plt.plot(noise.x, noise.y, 'b+')
plt.axis('equal')
plt.title('Cluster Analysis Data - Correction')
plt.legend(['Good Data','Removed Data'])
plt.ylabel('y (mm)')
plt.xlabel('x (mm)')

Plot Heatmap
grid_heatmap = np.zeros([2*grid_size,2*grid_size])
for idx, rw in grd.iterrows():
 grid_heatmap[-1*int(round(rw['grd_y']-grid_size+1)), int(round(rw['grd_x']+grid_size))] =
rw['numPoints']
plt.figure(2)
plt.imshow(grid_heatmap, cmap='Greys')
plt.colorbar(plt.pcolor(grid_heatmap, cmap='Greys'))
plt.title('Cluster Analysis Cells')
plt.xlabel('X Cell')
plt.ylabel('Y Cell')
plt.show()

E. Python Code to Perform Occupancy Mapping

occ_grid_size = math.ceil(maxs.max()[0]/(tess_grd_size))*2

occ = pd.DataFrame(0, index=np.arange(occ_grid_size**2), columns=['occ_x','occ_y','M','C'])
occ['occ_x'] = (np.floor(occ.index/occ_grid_size)+1)*tess_grd_size
occ['occ_y'] = (np.mod(occ.index, occ_grid_size)+1)*tess_grd_size
occ['cent_x'] = occ['occ_x'] - tess_grd_size/2
occ['cent_y'] = occ['occ_y'] - tess_grd_size/2
occ['r'] = np.sqrt((occ['cent_x'] - ((occ_grid_size/2)*tess_grd_size))**2 + (occ['cent_y'] -
((occ_grid_size/2)*tess_grd_size))**2)
occ['pnt_angle'] = np.arctan2(occ['cent_y'] - ((occ_grid_size/2)*tess_grd_size), occ['cent_x']
- ((occ_grid_size/2)*tess_grd_size))
occ['j'] = 0

occ_lines = scansCorr.copy()
occ_lines = occ_lines[[
 'scanNum',
 'x',
 'y'
]]
occ_lines['x'] = occ_lines['x'] + ((occ_grid_size/2)*tess_grd_size)
occ_lines['y'] = occ_lines['y'] + ((occ_grid_size/2)*tess_grd_size)
occ_lines['a'] = (occ_lines['x'] - ((occ_grid_size/2)*tess_grd_size))
occ_lines['b'] = -(occ_lines['a']**2 / (occ_lines['y'] - ((occ_grid_size/2)*tess_grd_size)))
occ_lines.loc[occ_lines['a'] == 0, 'a'] = 1
occ_lines['c'] = -((occ_lines['a']*occ_lines['x']) + (occ_lines['b']*occ_lines['y']))
occ_lines['line_angle'] = np.arctan2(occ_lines['y'] - ((occ_grid_size/2)*tess_grd_size),
occ_lines['x'] - ((occ_grid_size/2)*tess_grd_size))
occ_lines['h_x'] = np.sqrt((occ_lines['x'] - ((occ_grid_size/2)*tess_grd_size))**2 +
(occ_lines['y'] - ((occ_grid_size/2)*tess_grd_size))**2)
occ_lines['j'] = 0

occ_lines = pd.merge(occ, occ_lines, on=['j'])
occ_lines.drop(columns=['j'], inplace=True)

occ_lines['d_line'] = (abs((occ_lines['a']*occ_lines['cent_x']) +
(occ_lines['b']*occ_lines['cent_y']) + occ_lines['c'])) / np.sqrt(occ_lines['a']**2 +
occ_lines['b']**2)
occ_lines['d_end'] = np.sqrt((occ_lines['cent_x'] - occ_lines['x'])**2 + (occ_lines['cent_y'] -
occ_lines['y'])**2)

Convert lines and points to horizontal to determine if point is near line segment
occ_lines['pnt_h_x'] = ((occ_grid_size/2)*tess_grd_size) +
(occ_lines['r']*np.cos(occ_lines['pnt_angle'] - occ_lines['line_angle']))
occ_lines = occ_lines[
 (occ_lines['pnt_h_x'] >= ((occ_grid_size/2)*tess_grd_size)) &
 (occ_lines['pnt_h_x'] <= occ_lines['h_x'] + ((occ_grid_size/2)*tess_grd_size))
]

occ_lines = occ_lines[(occ_lines['d_line'] <= ray_cast_thresh) | (occ_lines['d_end'] <=
ray_cast_thresh)]
occ_lines['C'] = 1
occ_lines['M'] = -1
occ_lines.loc[occ_lines['d_end'] <= ray_cast_thresh, ['M']] = 1

occ = occ_lines.groupby(['occ_x','occ_y','cent_x','cent_y'])['M','C'].apply(lambda x :
x.astype(int).sum()).reset_index()
occ['occupied'] = occ['M']/occ['C']

Plot Heatmaps
occ_heatmap = np.zeros([occ_grid_size,occ_grid_size])
for idx, rw in occ.iterrows():
 occ_heatmap[-(int(round(rw['occ_y']/(tess_grd_size)))-1),
int(round(rw['occ_x']/(tess_grd_size)))-1] = rw['occupied']
plt.figure(1)
plt.imshow(occ_heatmap, cmap='Greys')
plt.colorbar(plt.pcolor(occ_heatmap, cmap='Greys'))
plt.title('Occupancy Map - Probability')
plt.xlabel('X Cell')
plt.ylabel('Y Cell')
plt.show()

for idx, rw in occ.iterrows():
 if rw['C'] == 0:
 occ_heatmap[-(int(round(rw['occ_y']/(tess_grd_size)))-1),
int(round(rw['occ_x']/(tess_grd_size)))-1] = 0
 elif rw['occupied'] > occ_thresh:
 occ_heatmap[-(int(round(rw['occ_y']/(tess_grd_size)))-1),
int(round(rw['occ_x']/(tess_grd_size)))-1] = 1
 else:
 occ_heatmap[-(int(round(rw['occ_y']/(tess_grd_size)))-1),
int(round(rw['occ_x']/(tess_grd_size)))-1] = -1
plt.figure(2)
plt.imshow(occ_heatmap, cmap='Greys')
plt.colorbar(plt.pcolor(occ_heatmap, cmap='Greys'))
plt.title('Occupancy Map - Threshold')
plt.xlabel('X Cell')
plt.ylabel('Y Cell')
plt.show()

F. Python Code to Execute Path Planning Functions

start = [occ_grid_size-(int(round((occ_grid_size/2)))-1), int(round((occ_grid_size/2)))-1]

end = [33, 40]
res = bfs(occ_heatmap, [start], end, showPlots=False)
plotHeatmaps(occ_heatmap, 'Greys', data2=res[1], data3=res[0], title='Breadth-First Search
Results')

G. Python Code to Move the Robot Along the Path

gpg = EasyGoPiGo3()

conv = [2.9022, 1.9972]
pose = [start[0], start[1], 0]
path = res[0].copy()

for i, rw in enumerate(path):

 if path[i][1] == pose[1] and path[i][0] == pose[0]:
 theta = pose[2]
 else:
 theta = equiv(np.arctan2(path[i][1] - pose[1], path[i][0] - pose[0]))
 gpg.turn_degrees(-(conv[0]*np.degrees(theta - equiv(pose[2])) + conv[1]))

 if path[i][1] - pose[1] != 0:
 gpg.drive_cm(conv[0]*abs(path[i][1] - pose[1])*tess_grd_size*100 + conv[1])
 else:
 gpg.drive_cm(conv[0]*abs(path[i][0] - pose[0])*tess_grd_size*100 + conv[1])

 pose = [path[i][0], path[i][1], theta]

H. Physical Robot Setup

