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Abstract—The purpose of this project was to develop a basic 

solution for using mobile robots in manufacturing and 

warehousing applications to reduce manpower requirements for 

material handling, picking, and internal transportation. This 

project uses a small two-wheeled mobile robot with a 360-degree 

LIDAR scanner mounted on it to generate a map of the area and 

navigate to a specified location. The algorithm developed uses the 

LIDAR scanner to obtain 2D range data which is then passed 

through a cluster analysis to remove noise. That data is then sent 

to an occupancy mapping algorithm to generate a map for the path 

finding algorithm. Once the robot path has been determined, the 

robot drives along the path until it reaches the goal point. While a 

feedback algorithm would significantly increase the accuracy of 

the robot navigation, the Kalman filter algorithm was not able to 

be implemented in this project. 

Keywords—LIDAR, occupancy mapping, mapping, localization, 

path planning, navigation 

I. INTRODUCTION 

Autonomous robotics, intelligent machines capable of 
performing tasks without explicit human control, require the 
input of sensors to provide information about the world around 
them in order to make decisions and perform tasks.  As the 
robots operate in a complex 3D world, sensor data must be 
analyzed and matched to the physical world to allow the robot 
to navigate effectively. 

In the manufacturing and resale industries, there is a flow of 
goods through a warehouse. While optimizations can be made 
to increase efficiency, such as reducing travel distances and 
minimizing retraced steps, there is a limit to the amount of time 
that can be saved. Being a fairly simple repetitive process, 
picking and transportation of goods in a warehouse could be 
further optimized through the use of autonomous mobile 
robotics.  

By removing the human element in picking and 
transportation, cost can be reduced as human labor can be 
focused on the more technical or less repetitive tasks such as 
assembly or packaging. While human labor is being used to 
assemble goods or package orders, an autonomous robot can be 
assigned a task and, without human interaction, prepare the 
goods required for the next order, allowing the workers to 
continue seamlessly. Not only will the save time for the workers 
and money in labor for the company, but this can also reduce the 

risk of human error. The high repeatability of a task performed 
by a robot reduces the time spent correcting mistakes and 
increases order accuracy and thus customer satisfaction. 

The tasks to be performed by an autonomous mobile robot 
in this project are to simulate picking goods from a specified 
location and delivering them to another. The robot will start 
from a random location, determine where it is, plan a route to 
the part location, navigate to that location while avoiding 
stationary obstacles, plan a route to the delivery location, and 
navigate to that location while avoiding obstacles. 

Autonomous mobile robots must use a sensor to determine 
their location in their environment and to detect obstacles. Often 
used are 2D scanners which provide a set of points in the 
horizontal plane that correspond to vertical physical surfaces. 
One method of converting this data into a form that can be used 
by a robot for path planning is occupancy mapping. By 
converting the area scanned into a grid and determining which 
cells are likely to be occupied and which are not, path planning 
algorithms can use that data to navigate around obstacles and 
through a map. 

In this project, a basic 360-degree 2D LiDAR scanner was 
used to collect the range data. The unit used is the YDLIDAR 
X4, a small entry-level scanner with a range of 0.12m to 10m. 
The scanner interfaces using a USB cable so the scans can be 
read into the provided software for visualization or read with a 
program to perform manipulation of the data. To read and work 
with the scan results, a Python program was created that makes 
use of libraries such as PyLidar3, for connecting to the scanner, 
MatPlotLib, for plotting the results, and Pandas, for handling the 
data. 

 

II. HARDWARE AND SOFTWARE SETUP 

A. Hardware Used 

• GoPiGo Robot 

o GoPiGo Robot Chassis 

o GoPiGo Electronic Board 

o Raspberry Pi Computer (3B+) 

o DexterOS microSD Card 

o Rechargeable Battery 

• YDLIDAR X4 LIDAR Scanner 
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• USB Battery Pack 

• USB-A to USB-C Cable 

• USB-A to MicroUSB Cable 

B. Lidar Scanner Setup 

Before connecting to the LIDAR scanner, it should be 

mounted to the robot. If possible, it would be best to drill holes 

in the top part of the chassis which correspond to the legs of the 

LIDAR scanner, however, if that is not an option, small pieces 

of wire can be used to tie the scanner to the holes along the edge 

of the top of the chassis. The scanner also requires external 

power, so an additional battery pack is required. Mount the 

battery pack to the robot and plug the power USB cable into the 

battery pack and the power port on the LIDAR scanner. The 

physical setup of the robot is shown in Appendix H. 

In order to communicate with the YDLIDAR X4 scanner, 

the correct serial communication port must be specified in the 

code. The robot must be turned on and connected to from a 

computer. In the Code > Python section, open a new terminal. 

With the scanner plugged in to one of the USB ports on the 

RaspberryPi, use the command ‘dmesg | grep tty‘ to find 

the port that the scanner is connected to. The port will start with 

“tty”, as shown in Fig. 1. 

 

 
Fig. 1. Ubuntu Terminal - Find LIDAR Serial Port 

C. Python Code Setup 

For the Python code to run and the LIDAR scanner to be 

used, the PyLidar3 library must first be installed on the 

RaspberryPi. First try using the command ‘pip install 
PyLidar3’ in the terminal. If that does not work, navigate to 

the GitHub page for the PyLidar3 library, download the 

package, unzip the folder, and upload the files to a file 

location on the RaspberryPi. Once uploaded, change the 

directory of the terminal to match the directory where the 

setup.py file is located for the PyLidar3 library. Then run the 

command ‘python3 setup.py install’ in the terminal to 

install the library. 

With the library installed, create a new Python3 notebook 

on the RaspberryPi and paste the code from Appendixes A-G 

into it. Change the port variable to match the name determined 

in step B and add the prefix “/dev/” to the port name. 

III. ALGORITHM IMPLEMENTATION 

The algorithm for this project was implemented using 

Python in a Jupyter Notebook using the easygopigo3, PyLidar3, 

Pandas, Numpy, MatPlotLib, time, and math libraries. The 

easygopigo3 library is used to send commands to the robot to 

move. The PyLidar3 library is used to send commands to and 

receive data from the YDLIDAR X4 scanner. The Pandas 

library is used for storing the data and is particularly useful for 

manipulating data quickly. The Numpy library is used in 

conjunction with the Pandas library to perform manipulations 

of the data.  MatPlotLib is used to display the graphs of the data. 

The time library is used for specifying the scan time of the 

LIDAR scanner. The math library is used in calculations done 

on the scan data. 

A. Import Libraries and Initialize Variables 

Before the program starts, all required libraries are 

imported, and variables are initialized. While it isn’t always 

necessary to do this at the start of the program, it helps keep it 

organized and makes modifying the variables easier as the 

program gets larger. The code to import the libraries and 

initialize the variables is shown in Appendix A. 

B. Define Functions 

Since the graph search algorithms are recursive, they need 

to be set up using functions. The functions for the graph 

search algorithms, as well as for plotting the progress of the 

algorithms, are defined at the beginning of the program so 

they can be used later. Since these functions also use some of 

the libraries imported in part A, the functions must be defined 

after the libraries are imported. The code defining the 

functions is shown in Appendix B.  
A recursive function is one that can call itself, which results 

in the function being able to be repeated multiple times where 
the results of the later iterations can affect the results of the 
earlier iterations. This is required in the map search algorithms 
since it is possible for the path the algorithm is taking to get 
‘stuck’, meaning there aren’t any more unoccupied points it can 
move to from the current point, but it hasn’t reached the end 
point. Using a recursive function in this scenario allows the 
algorithm to retrace its steps and search for other possibilities at 
each step until it finds a new path.  

1) Breadth-First Search 

The breadth-first search works in all directions at 

once, by searching all points adjacent to the previous 

search points at the same time. This creates multiple search 

paths that branch out at each iteration. As the search 

spreads out, the number of points searched increases and 

spreads out across the map until the end point is reached. 

The algorithm then works backward through the path that 

reached the end point first. This algorithm weights each 

cell evenly, so the resulting path is the shortest path not 

including diagonals.  

 

2) Depth-First Search 

The depth-first search works on one path at a time, 

searching until it either finds the end point, or gets stuck. If 

it gets stuck it backtracks and tries to find a new path to 

follow. This method creates one path at a time, so once the 

end point is reached, it returns the path it was following. 

This algorithm weights each cell evenly, but since the 

order of the directions it searches in is arbitrary, it may 

find the shortest path, excluding diagonals, or it may find 

and extraordinarily long path.  

 

3) Directional Depth-First Search 

The directional depth-first search uses the same principle 

of the depth-first search where a single path is explored at 



a time, however, it differs in how it determines which cell 

to search next. The depth-first search just uses an arbitrary 

setting, such as search down first, then right, then up, then 

left. The directional depth-first search, on the other hand, 

compares the location of the current point to the end point 

and moves in the direction with the greatest distance to go 

toward the end point.  

 

C. Perform Scans 

The first step in creating an occupancy map is obtaining the 
range scan data. The test program provided in the PyLidar3 
documentation was modified to fit the needs of the project 
better. The serial port was added as a static variable rather than 
a prompt. Additionally, the scan time, plot maximum, and 
minimum measurement threshold were added as variables. The 
scan data is also added into a Pandas DataFrame for use in the 
occupancy mapping algorithm. The updated code is shown 
Appendix C. 

Three parameters are used in the scanning code: Minimum 
Distance Threshold, Buffer and Scan Time. The scan time just 
specifies how long the scanner runs, changing the number of 
scans performed. This value was set to 4 seconds which returns 
about seven to 10 scans. This provides additional information 
for the cluster analysis and helps remove noise without creating 
excess data to analyze. The buffer is simply subtracted from all 
the distance measurements to create a buffer around all the 
objects detected to help prevent the robot from colliding with the 
walls or obstacles. 

The Minimum Distance Threshold specifies the minimum 
distance between the sensor and the measurement that will be 
recorded. The effect of this parameter is shown in Figs 3 and 4. 
This parameter essentially removes all data points within a 
radius of the origin point. This parameter was set at 200 
millimeters as it included as much data as possible, while 
removing the noise that appears near the scanner. With the 
minimum scanning distance of the YDLIDAR X4 being 120 
millimeters, the value selected removes only the points very 
close to the minimum which are highly likely to be noise. 

 

Fig. 2. LIDAR Scan with Min Distance Threshold = 200mm 

 
Fig. 3. LIDAR Scan with Min Distance Threshold = 500mm 

 
An additional optimization to increase the accuracy of the 

data, and thus the occupancy map, was to drop the first scan 
performed. Many of the first scans are full of noise and show 
very little of the actual features in the area. This is likely due to 
the acceleration of the scanner as it starts up, so once it is 
spinning at a constant velocity, the scans are much cleaner. This 
can be shown in comparing Fig. 4 to Fig. 5 which are scans 2 
and 1 respectively. 

 
Fig. 4. LIDAR Scan - First Scan Showing Excess Noise Due to Scanner 

Acceleration 

D. Cluster Analysis 

In each scan, there are a small number of points that do not 
correspond to physical objects in the area scanned. These points 
are considered noise and will negatively affect the performance 
of the occupancy mapping algorithm by providing false 
positives of an object. To help combat this, a cluster analysis is 
performed which groups nearby points into cells and removes 
points in cells that don’t contain enough points.  

While this method alone is fairly effective, it can have issues 
if noise is concentrated in a certain area on a scan, or if objects 
that are further away from the sensor have points on a line but 
spread out. In the first scenario, the dense cluster of noise may 
not get removed if it doesn’t fall below the threshold. In the 
second scenario, valid points can be removed when they are 
spread apart and fall below the threshold. To help prevent these 



two issues, multiple scans are taken while keeping the scanner 
stationary. These scans are then stacked on top of each other, 
and the point clouds of the actual objects get denser, while the 
noise stays sparse as it is random. The Python code to perform 
the cluster analysis can be found in Appendix D. 

The cluster analysis algorithm uses two parameters: Cluster 
Grid Size, and Cluster Threshold. The grid size parameter 
specifies the size of the grid squares used to group the data 
points. Larger grid sizes tend to reduce the number of points 
removed as noise, while smaller grid sizes increase the number 
of points removed. This is shown in Figs 6, 7, and 8. The grid 
size selected for this exercise was 0.1 meters for this 
environment; the ideal grid size could change depending on the 
overall size, complexity, or noise of the environment being 
scanned.  

 

Fig. 5. Cluster Analysis - Grid Size=0.01m, Cluster Threshold=0.7 

 

Fig. 6. Cluster Analysis - Grid Size=0.1m, Cluster Threshold=0.7 

 

Fig. 7. Cluster Analysis - Grid Size=0.5m, Cluster Threshold=0.7 

 

Fig. 8. Cluster Analysis Heatmap - Grid Size=0.01m 

 

Fig. 9. Cluster Analysis Heatmap - Grid Size=0.1m 



The second parameter used in the cluster analysis is the 
Cluster Threshold. This specifies the minimum ratio of points in 
a cell to the number of scans included in the cluster analysis. The 
higher this ratio, the more points get removed as noise. The 
value selected for this exercise is 0.5, which removes a good 
portion of the noise. It does leave some of the noise, however, 
increasing this threshold starts to remove points that are correct. 
Additionally, the occupancy mapping algorithm is able to 
remove some noise so the noise that is left doesn’t affect the 
result significantly. The effect of the Cluster Threshold is shown 
in Figs 11, 12, and 13. 

 

Fig. 10. Cluster Analysis - Grid Size=0.1m, Cluster Threshold=0.1 

 

Fig. 11. Cluster Analysis - Grid Size=0.1m, Cluster Threshold=0.5 

 

Fig. 12. Cluster Analysis - Grid Size=0.1m, Cluster Threshold=1 

E. Occupancy Mapping 

 To generate the occupancy map, a grid is created that 
encompasses the overall size of the scanned area. Two values 
are stored for each cell in the grid, 𝑀 and 𝐶. 𝑀 is the evidence 
of the cell being occupied, and 𝐶 is the number of times the cell 
has been observed.  

 To populate this grid, each measurement is analyzed 
individually. The 𝑀 and 𝐶 values of the cell that contains the 
measurement location get incremented. For all the cells that the 
light beam would have passed through to reach to measurement 
location, the 𝑀  value is decremented while the 𝐶  value is 
incremented. The concept is, the higher the value of the 𝑀/𝐶 
value for a cell, the more likely it is to be occupied. A threshold 
can then be used to specify which cells are considered occupied 
and which are not. 

 This algorithm was implemented using a Pandas DataFrame 
to hold the list of cells, their locations, and their 𝑀 and 𝐶 values. 
This was then joined with a DataFrame containing all the 
measurements such that all measurements are compared to all 
cells. Then the distances between the measurement and the cell 
center, and the measurement path and the cell center are 
calculated. Based on a distance threshold, the 𝑀 and 𝐶 values 
for each cell are incremented, decremented, or ignored. The 
occupancy mapping Python script is included in Appendix E. 

 Other common algorithms for incremental occupancy 
mapping, such as Bresenham’s Line and ray marching, work by 
traversing the ray path from the query point to the measurement 
location [1]. These methods would require an iterative solution 
which, especially over large datasets, is time-consuming. Even 
though the method implemented in this exercise requires larger 
datasets to compare every cell location to every measurement, it 
does not require iterative solution and remains suitably fast. 

 Three parameters are used to control the occupancy mapping 
algorithm: Tessellation Grid Size, Ray Cast Threshold, and 
Occupancy Threshold.  

1) Tessellation Grid Size 
 The Tessellation Grid Size, much like the Cluster Grid 
Size, specifies the size of the cells that the area is split into. 
Decreasing the size can help increase the accuracy of the 



location of detected objects, however, it can increase the 
opportunity for false negatives in certain situations. The 
effect of changing the Tessellation Grid Size is shown in 
Figs 14, 15, and 16. The Tessellation Grid Size value was 
chosen to be 0.08 meters for this exercise as it provided the 
best resolution while keeping gaps to a minimum.  

 

Fig. 13. Occupancy Probability Map - Tessellation Grid Size=0.04m 

 

Fig. 14. Occupancy Probability Map - Tessellation Grid Size=0.08m 

 

Fig. 15. Occupancy Probability Map - Tessellation Grid Size=0.2m 

 

2) Ray Cast Threshold 
 The method of determining which cells the ray of light, 
used to measure each distance, passed through is called ray 
casting. This determines that the cells the ray passed through 
are empty and the cell where the object was found, and thus 
a measurement returned, is occupied.  

 While calculating exactly which cells each ray passed 
through would provide the most accurate results, it would be 
too computationally expensive. Instead, the rays are 
considered to pass through a cell if they come within a 
certain radius of the center of the cell. That radius is the Ray 
Cast Threshold. The effects of the Ray Cast Threshold are 
shown in Figs 17, 18, and 19. The value chosen for this 
exercise was setting the Ray Cast Threshold equal to twice 
the Tessellation Grid Size to provide a buffer between 
obstacles and the path generated for the robot. This provides 
some overlap between cells which can help close some gaps 
but may also reduce the certainty of some cells. As can be 
seen in Fig. 17, too small a value causes many false 
negatives, while Fig. 19 shows how too large a value creates 
many false positives. 



  

Fig. 16. Occupancy Threshold Map – Ray Cast Threshold = Half the 

Tessellation Grid Size 

  

Fig. 17. Occupancy Threshold Map – Ray Cast Threshold = Tessellation Grid 

Size 

 
Fig. 18. Occupancy Threshold Map – Ray Cast Threshold = Twice the 

Tessellation Grid Size 

3) Occupancy Threshold 
 While the probability map can be useful as, in uncertain 
areas it would provide the robot a place to investigate further 
to increase the certainty of occupancy, it is also helpful in 
path planning to have a threshold which determines if each 
cell is to be considered occupied. This can be visualized by 
comparing Figs 14 – 16 to 17 – 19. Figs 14 – 16 show the 
probability of each cell as a shade of gray, such the maps 
have a fading effect near objects, while in Figs 17 – 19 
unoccupied cells are white, occupied cells are black, and 
uncertain cells are a single shade of gray.  

 The effect of changing the Occupancy Threshold is 
shown in Figs 20, 21, and 22. The value can only be between 
-1 and 1, where -1 is completely unoccupied and 1 is 
completely occupied. For this exercise, the Occupancy 
Threshold was chosen to be -0.3 which provides the most 
complete occupancy map without including many false 
positives.  

  

Fig. 19. Occupancy Threshold Map - Occupancy Threshold = -0.6 

 

Fig. 20. Occupancy Threshold Map - Occupancy Threshold = -0.3 



 

Fig. 21. Occupancy Threshold Map - Occupancy Threshold = 0.4 

F. Path Planning 

The path planning algorithm used in this project is the 

breadth-first search due to its consistency and how the paths it 

generates have minimal turns for the robot to perform. The 

breadth-first algorithm provides very consistent results where, 

if every cell is considered to require the same distance 

travelled, it finds the shortest route possible. This algorithm 

tends to form an L-shaped path, where the path moves out 

from the start point then turns left to the goal point. This is due 

to the order of checking for available points in the algorithm. 

 
Fig. 22. Breadth-First Search - Start=(3,23) End=(26,17) 

The algorithm considers uncertain spaces as available so it 

can plot a path through them and while it could be made safer 

by preventing that, on larger maps that could mean that the 

algorithm isn’t able to find a solution where there are areas 

outside of the vision of the sensor. This does mean that the 

algorithm can create impossible paths such as the one shown 

in Fig. 22. In the figures, the blue cells are cells that were 

visited by the algorithm and the red cells are the path 

determined by the algorithm. The definition of the path 

planning function is shown in Appendix B. and the execution 

of the path planning algorithm is shown in Appendix F. 

 
Fig. 23. Breadth-First - Start=(3,23) End=(15,36) 

 

G. Navigation 

To navigate, each step in the path generated by the path 

planning algorithm is compared to the current state of the 

robot. First, the angle is determined and if different than the 

current robot angle, the robot turns to match the required 

angle. Then the location is compared and if it is different the 

robot moves in a straight line forward to the next point. The 

code for this is shown in Appendix G. 

 

IV. ALGORITHM RESULTS 

 Up to the navigation step, algorithm provides a sufficient 
level of accuracy to assist with basic robot navigation, however, 
without a robot localization algorithm to act as a feedback loop, 
the navigation of the robot is not accurate. As the robot travels, 
it gets slightly off course, so each further movement generally 
takes it further off course. 

 The LIDAR scanner is adequate for basic robot navigation 
but did have some issues that negatively affect the results of the 
algorithm. First, the first scan performed is often full of noise 
and must be discarded. Second, every scan has random noise and 
many of the scans had repetitive noise. While the random noise 
can usually be removed with multiple scans passed through a 
cluster analysis, the repetitive noise was not removed. This is 
shown near the center of the area in Fig. 7. This noise could be 
caused by ambient light in the environment. 

 In the occupancy mapping algorithm, there are some false 
negatives in areas where the measurements are more spread 
apart such as along walls that are approaching parallel with the 
sensor beam. This causes a large change in linear distance 



between measurements with only a small angle change. This is 
shown on the left side of the top wall in Fig 12. These false 
negatives could potentially be remedied with a continuous 
occupancy mapping scheme was being used which could update 
low-confidence areas as the robot moved around the area. Using 
this process would change the optimal values of many of the 
parameters. 

 Since the Kalman filter is not functional, the navigation in 
this project is simply done from the initial path plan. This does 
result in inaccuracy as the robot is not able to drive the exact 
distance or turn to the exact angle specified, especially since the 
experiment is performed on carpet which causes significant 
variance in the actual distance moved. Some testing was 
performed to determine the relationship between the distance or 
angle sent to the robot and the actual distance or angle moved, 
and both relations came out to be almost the same. For 
simplicity, both the turn and drive commands used the same 
mapping equation. This method performs relatively well, 
however, as distance traveled is increased the error in the 
navigation is increased. Additionally, there is not obstacle 
avoidance implemented on the robot due to the lack of a 
functional Kalman filter to localize the robot to determine a new 
path around the new obstacle.  

 The Kalman filter, which uses statistical analysis to match 
extracted lines from 2D scan data to a predefined map, would 
allow for significantly more accurate robot navigation. As the 
robot moves, additional scans could be performed which, when 
passed through the Kalman filter, could determine the robot’s 
new location with a certain degree of certainty, and a new path 
to the goal point could be planned. This allows for significant 
correction of error introduced in the environment. 

 

V. CONCLUSION AND FUTURE WORK 

The method of scanning and pre-processing the data works 
well and cleans up most of the noise that appears in the scan 
data. This helps improve the accuracy of the rest of the 
algorithms that use the data. While there are other methods for 
cluster analysis, this relatively simple method is sufficient for 
this application. 

While the iterative method for creating an occupancy map 
implemented in this exercise provides sufficient results for basic 
robot navigation and obstacle avoidance, more complex 
statistical methods demonstrate significantly more accurate 

results. One such method, called the Gaussian Process (GP), has 
multiple advantages such as the ability to introduce 
dependencies between data points and therefore generate maps 
from relatively noisy or sparse data, as well as producing a 
variance plot which can highlight areas that require additional 
exploration by the robot. To help optimize the existing program, 
a set of KPIs (Key Performance Indicators) could be introduced. 
By comparing a pre-existing map to the occupancy map 
generated, the accuracy of the algorithm could be greatly 
increased by programmatically updating the parameters and 
comparing the KPIs. Some potential KPIs could include True 
Positive Rate, False Positive Rate, Precision, and False 
Discovery Rate. [2, 3] 

The path planning algorithm has significant opportunity for 
improvement. The current algorithm, the breadth-first search, 
only creates paths consisting of vertical and horizontal lines. In 
most cases, there is a significantly shorter path between the 
starting and ending points if the robot was to travel along a 
diagonal. This method would be difficult to implement in the 
breadth-first search, but an adaptation of the depth-first search 
algorithm might be able to produce diagonal lines by analyzing 
the results of the algorithm and extracting diagonal lines from 
the resulting path.  

The navigation of the robot in this project presents the 
greatest opportunity for improvement. Without the 
implementation of robot localization, the robot navigation will 
always be inaccurate regardless of the accuracy of the path 
planned and the precision of the robot. External factors affect 
how the robot moves and create at minimum small inaccuracies 
in the robot’s movements. The implementation of the Kalman 
filter, while not perfect, would at least allow significant 
inaccuracies to be corrected by localizing the robot throughout 
its path and correcting the path where needed.  
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Appendix 

 

A. Python Code to Import Libraries and Initialize Variables 

from easygopigo3 import EasyGoPiGo3 
import PyLidar3 
import matplotlib.pyplot as plt 
import pandas as pd 
import numpy as np 
import time 
import math 
 
tess_grd_size = 0.08    # meters 
ray_cast_thresh = tess_grd_size*2 
occ_thresh = -0.3      # Number between -1 and 1 
clust_grd_size = 0.1   # meters 
clust_thresh = 0.5     # ratio points in cell / # of scans 
scan_time = 4          # seconds 
buff = 0.05            # meters 
port = "/dev/ttyUSB0"  # Serial Port that the LIDAR is connected to 
min_thresh = 0.200     # meters 
scanNum = 0 
scans = pd.DataFrame(columns=["scanNum","x","y","grd_x","grd_y"]) 
x = np.zeros((360)) 
y = np.zeros((360)) 
 

  



B. Python Code to Define Functions 

def equiv(angle): 
    if isinstance(angle, pd.Series): 
        equiv = pd.DataFrame(columns=['angle'], data = angle) 
        equiv.loc[(((np.absolute(equiv['angle'])/np.pi) % 2) > 1), 'equiv'] = -1*(-
np.absolute(equiv['angle']) % np.pi)*np.sign(equiv['angle']) 
        equiv.loc[(((np.absolute(equiv['angle'])/np.pi) % 2) <= 1) & 
(np.absolute((np.absolute(equiv['angle']) % (2*np.pi)) - np.pi) < 0.000001), 'equiv'] = 
np.pi*np.sign(equiv['angle']) 
        equiv.loc[(((np.absolute(equiv['angle'])/np.pi) % 2) <= 1) & 
(np.absolute((np.absolute(equiv['angle']) % (2*np.pi)) - np.pi) >= 0.000001), 'equiv'] = 
(np.absolute(equiv['angle']) % np.pi)*np.sign(equiv['angle']) 
        return equiv['equiv'] 
    else: 
        equiv = -1*(-np.absolute(angle) % np.pi)*np.sign(angle) if ((np.absolute(angle)/np.pi) 
% 2)>1 else (np.pi if (np.absolute(angle) % (2*np.pi)) == np.pi else (np.absolute(angle) % 
np.pi))*np.sign(angle) 
        return equiv 
 
def plotHeatmaps(heatmap1, color1, data2=[], color2='bwr', data3=[], color3='autumn', 
title="Heatmap", xlabel="x", ylabel="y"): 
    heatmap2 = np.zeros([len(heatmap1), len(heatmap1)]) 
    heatmap3 = np.zeros([len(heatmap1), len(heatmap1)]) 
     
    for i in range(0, len(data2)): 
        heatmap2[data2[i][0],data2[i][1]] = 1 
         
    for j in range(0, len(data3)): 
        heatmap3[data3[j][0],data3[j][1]] = 1 
         
    heatmap2 = np.ma.masked_where(heatmap2 < 0.1, heatmap2) 
    heatmap3 = np.ma.masked_where(heatmap3 < 0.1, heatmap3) 
    plt.imshow(heatmap1, cmap=color1) 
    plt.imshow(heatmap2, cmap=color2, interpolation='none') 
    plt.imshow(heatmap3, cmap=color3, interpolation='none') 
    plt.title(title) 
    plt.xlabel(xlabel)  
    plt.ylabel(ylabel) 
    plt.show() 
 
def bfs(graph, start, end, visited=[], path=[], level=0, showPlots=False):   # Breadth-First 
Search 
    # Returns a (i,j)x2x2 jagged array: [Path (2xi), Cells Visited (2xj)] 
    # graph: a (nxm) 2D array of 0's and 1's  
    # start: coordinates of the start points in the graph. Size nx2.  
    # end: coordinates of the end point in the graph. Size 1x2. 
    # visited: a list of the points within the graph that have been visited 
    # path: a list of the iteration number and points, and each of their previous points, 
passed through to reach the start point. Size nx5 
     
    nextStart = [] 
    fnd = False 
 
    try: 
        len(start[0]) 
    except: 



        raise Exception("'start' array must be two-dimensional") 
         
    if len(visited) == 0: 
        visited.append(start[0]) 
    if showPlots: 
        plotHeatmaps(graph, 'Greys', data2=visited, data3=[visited[0],end], title='Breadth-
First Search') 
     
    for i in range(0, len(start)):       
        for j in range(0,4): 
            if j == 0: 
                p = [start[i][0]+1,start[i][1]] 
            elif j == 1: 
                p = [start[i][0],start[i][1]+1] 
            elif j == 2: 
                p = [start[i][0]-1,start[i][1]] 
            elif j == 3: 
                p = [start[i][0],start[i][1]-1] 
             
            if p[0] >= 0 and p[1] >= 0 and p[0] < len(graph) and p[1] < len(graph[0]): 
                avail = True 
                if len(visited) > 0: 
                    for k in range(0, len(visited)): 
                        if visited[k][0] == p[0] and visited[k][1] == p[1]: 
                            avail = False 
 
                if graph[p[0]][p[1]] > 0: 
                    avail = False 
                 
                if avail: 
                    fnd = True 
                    path.append([level, start[i][0], start[i][1], p[0], p[1]]) 
                    nextStart.append(p) 
                    visited.append(p) 
                     
                    if p == end: 
                        curr = end 
                        for k in range(len(path)-1, -1, -1): 
                            if path[k][3:5] == curr: 
                                curr = path[k][1:3] 
                            else: 
                                del path[k] 
                        for l in path: 
                            del l[0:3] 
                        return path, visited 
 
    if not fnd: 
        return path, visited 
    bfs(graph, nextStart, end, visited, path, level+1, showPlots=showPlots) 
    return path, visited 
 

 

 

  



C. Python Code to Perform and Record the LIDAR Scans 

dataSource = input('Enter how the data should be obtained (File/Scan):') 
if dataSource == 'File': 
    scans = pd.read_csv (r'ScanData.csv') 
elif dataSource == 'Scan': 
    Obj = PyLidar3.YdLidarX4(port)  
    if(Obj.Connect()): 
        print(Obj.GetDeviceInfo()) 
        scans = pd.DataFrame(columns=["scanNum","rho","theta","x","y","grd_x","grd_y"]) 
        gen = Obj.StartScanning() 
        t = time.time() # start time  
        while (time.time() - t) < scan_time: # scan for specified amount of time 
            data = next(gen) 
            scanNum +=1 
            for angle in range(0,360): 
                data[angle] = data[angle] / 1000.0 
                if scanNum != 1: 
                    if(data[angle]>min_thresh): 
                        x[angle] = (data[angle] - buff) * math.sin(math.radians(angle)) 
                        y[angle] = (data[angle] - buff) * math.cos(math.radians(angle)) 
                    else: 
                        x[angle] = 0 
                        y[angle] = 0 
 
                    newRow = { 
                        'scanNum':scanNum, 
                        'rho':data[angle], 
                        'theta':angle, 
                        'x':x[angle], 
                        'y':y[angle], 
                        'grd_x':0, 
                        'grd_y':0 
                              } 
                    scans = scans.append(newRow, ignore_index=True) 
        Obj.StopScanning() 
        Obj.Disconnect() 
 
        scans.to_csv(r'ScanData.csv', index=False) 
 
        for i in range(scanNum-1): 
            plotData = scans[scans.scanNum == i+2] 
            plotData = plotData[['x','y']] 
            plt.figure(i+2) 
            plt.plot(plotData.x, plotData.y, 'r*') 
            plt.plot(0, 0, 'b*') 
            plt.axis("equal") 
            plt.xlabel("x (mm)") 
            plt.ylabel("y (mm)") 
            plt.legend(['Scan Data','Robot Location']) 
            plt.title("Scan "+str(i+2)) 
    else: 
        Obj.Disconnect() 
        print("Error connecting to device") 
 
else: 
    print("Invalid Entry, please type one of: 'File' or 'Scan'") 



D. Python Code to Perform Cluster Analysis 

mx = scans.max() 
scans = scans[scans['scanNum']==mx['scanNum']].reset_index(drop=True) 
mx = scans.max() 
mn = scans.min() 
maxs = pd.DataFrame({'mx':[abs(mx['x']), abs(mn['x']), abs(mx['y']), abs(mn['y'])]}) 
grid_size = math.ceil(maxs.max()[0]/(clust_grd_size)) 
 
scans['grd_x'] = np.floor(scans.x/(clust_grd_size)) 
scans['grd_y'] = np.floor(scans.y/(clust_grd_size)) 
 
numScansDF = scans.groupby(['scanNum']).x.count().reset_index() 
numScans = numScansDF.scanNum.count() 
 
grd = scans.groupby(['grd_x','grd_y']).x.count().reset_index() 
grd = grd[(grd.grd_x != 0) | (grd.grd_y != 0)] 
grd.rename(columns={'x':'numPoints'}, inplace=True) 
 
# Remove Datapoints below Threshold 
scansCorr = pd.merge(scans, grd, on=['grd_x','grd_y']) 
noise = scansCorr[scansCorr.numPoints/numScans <= clust_thresh].reset_index(drop=True) 
scansCorr = scansCorr[scansCorr.numPoints/numScans > clust_thresh].reset_index(drop=True) 
 
# Plot Data Correction 
plt.figure(1) 
plt.plot(scansCorr.x, scansCorr.y, 'r*') 
plt.plot(noise.x, noise.y, 'b+') 
plt.axis('equal') 
plt.title('Cluster Analysis Data - Correction') 
plt.legend(['Good Data','Removed Data']) 
plt.ylabel('y (mm)') 
plt.xlabel('x (mm)') 
 
# Plot Heatmap 
grid_heatmap = np.zeros([2*grid_size,2*grid_size]) 
for idx, rw in grd.iterrows(): 
    grid_heatmap[-1*int(round(rw['grd_y']-grid_size+1)), int(round(rw['grd_x']+grid_size))] = 
rw['numPoints'] 
plt.figure(2) 
plt.imshow(grid_heatmap, cmap='Greys') 
plt.colorbar(plt.pcolor(grid_heatmap, cmap='Greys')) 
plt.title('Cluster Analysis Cells') 
plt.xlabel('X Cell') 
plt.ylabel('Y Cell') 
plt.show() 
 

 

 

  



E. Python Code to Perform Occupancy Mapping 

occ_grid_size = math.ceil(maxs.max()[0]/(tess_grd_size))*2 
 
occ = pd.DataFrame(0, index=np.arange(occ_grid_size**2), columns=['occ_x','occ_y','M','C']) 
occ['occ_x'] = (np.floor(occ.index/occ_grid_size)+1)*tess_grd_size 
occ['occ_y'] = (np.mod(occ.index, occ_grid_size)+1)*tess_grd_size 
occ['cent_x'] = occ['occ_x'] - tess_grd_size/2 
occ['cent_y'] = occ['occ_y'] - tess_grd_size/2 
occ['r'] = np.sqrt((occ['cent_x'] - ((occ_grid_size/2)*tess_grd_size))**2 + (occ['cent_y'] - 
((occ_grid_size/2)*tess_grd_size))**2) 
occ['pnt_angle'] = np.arctan2(occ['cent_y'] - ((occ_grid_size/2)*tess_grd_size), occ['cent_x'] 
- ((occ_grid_size/2)*tess_grd_size)) 
occ['j'] = 0 
 
occ_lines = scansCorr.copy() 
occ_lines = occ_lines[[ 
    'scanNum', 
    'x', 
    'y' 
]] 
occ_lines['x'] = occ_lines['x'] + ((occ_grid_size/2)*tess_grd_size) 
occ_lines['y'] = occ_lines['y'] + ((occ_grid_size/2)*tess_grd_size) 
occ_lines['a'] = (occ_lines['x'] - ((occ_grid_size/2)*tess_grd_size)) 
occ_lines['b'] = -(occ_lines['a']**2 / (occ_lines['y'] - ((occ_grid_size/2)*tess_grd_size))) 
occ_lines.loc[occ_lines['a'] == 0, 'a'] = 1 
occ_lines['c'] = -((occ_lines['a']*occ_lines['x']) + (occ_lines['b']*occ_lines['y'])) 
occ_lines['line_angle'] = np.arctan2(occ_lines['y'] - ((occ_grid_size/2)*tess_grd_size), 
occ_lines['x'] - ((occ_grid_size/2)*tess_grd_size)) 
occ_lines['h_x'] = np.sqrt((occ_lines['x'] - ((occ_grid_size/2)*tess_grd_size))**2 + 
(occ_lines['y'] - ((occ_grid_size/2)*tess_grd_size))**2) 
occ_lines['j'] = 0 
 
occ_lines = pd.merge(occ, occ_lines, on=['j']) 
occ_lines.drop(columns=['j'], inplace=True) 
 
occ_lines['d_line'] = (abs((occ_lines['a']*occ_lines['cent_x']) + 
(occ_lines['b']*occ_lines['cent_y']) + occ_lines['c'])) / np.sqrt(occ_lines['a']**2 + 
occ_lines['b']**2) 
occ_lines['d_end'] = np.sqrt((occ_lines['cent_x'] - occ_lines['x'])**2 + (occ_lines['cent_y'] - 
occ_lines['y'])**2) 
 
 
# Convert lines and points to horizontal to determine if point is near line segment 
occ_lines['pnt_h_x'] = ((occ_grid_size/2)*tess_grd_size) + 
(occ_lines['r']*np.cos(occ_lines['pnt_angle'] - occ_lines['line_angle'])) 
occ_lines = occ_lines[ 
    (occ_lines['pnt_h_x'] >= ((occ_grid_size/2)*tess_grd_size)) &  
    (occ_lines['pnt_h_x'] <= occ_lines['h_x'] + ((occ_grid_size/2)*tess_grd_size))  
] 
 
occ_lines = occ_lines[(occ_lines['d_line'] <= ray_cast_thresh) | (occ_lines['d_end'] <= 
ray_cast_thresh)] 
occ_lines['C'] = 1 
occ_lines['M'] = -1 
occ_lines.loc[occ_lines['d_end'] <= ray_cast_thresh, ['M']] = 1 



occ = occ_lines.groupby(['occ_x','occ_y','cent_x','cent_y'])['M','C'].apply(lambda x : 
x.astype(int).sum()).reset_index() 
occ['occupied'] = occ['M']/occ['C'] 
 
# Plot Heatmaps 
occ_heatmap = np.zeros([occ_grid_size,occ_grid_size]) 
for idx, rw in occ.iterrows(): 
    occ_heatmap[-(int(round(rw['occ_y']/(tess_grd_size)))-1), 
int(round(rw['occ_x']/(tess_grd_size)))-1] = rw['occupied'] 
plt.figure(1) 
plt.imshow(occ_heatmap, cmap='Greys') 
plt.colorbar(plt.pcolor(occ_heatmap, cmap='Greys')) 
plt.title('Occupancy Map - Probability') 
plt.xlabel('X Cell') 
plt.ylabel('Y Cell') 
plt.show() 
 
for idx, rw in occ.iterrows(): 
    if rw['C'] == 0: 
        occ_heatmap[-(int(round(rw['occ_y']/(tess_grd_size)))-1), 
int(round(rw['occ_x']/(tess_grd_size)))-1] = 0 
    elif rw['occupied'] > occ_thresh: 
        occ_heatmap[-(int(round(rw['occ_y']/(tess_grd_size)))-1), 
int(round(rw['occ_x']/(tess_grd_size)))-1] = 1 
    else: 
        occ_heatmap[-(int(round(rw['occ_y']/(tess_grd_size)))-1), 
int(round(rw['occ_x']/(tess_grd_size)))-1] = -1 
plt.figure(2) 
plt.imshow(occ_heatmap, cmap='Greys') 
plt.colorbar(plt.pcolor(occ_heatmap, cmap='Greys')) 
plt.title('Occupancy Map - Threshold') 
plt.xlabel('X Cell')  
plt.ylabel('Y Cell') 
plt.show() 
  



F. Python Code to Execute Path Planning Functions 

start = [occ_grid_size-(int(round((occ_grid_size/2)))-1), int(round((occ_grid_size/2)))-1] 
 
end = [33, 40] 
res = bfs(occ_heatmap, [start], end, showPlots=False)  
plotHeatmaps(occ_heatmap, 'Greys', data2=res[1], data3=res[0], title='Breadth-First Search 
Results') 
 

  



G. Python Code to Move the Robot Along the Path 

gpg = EasyGoPiGo3() 
 
conv = [2.9022, 1.9972] 
pose = [start[0], start[1], 0] 
path = res[0].copy() 
 
for i, rw in enumerate(path): 
     
    if path[i][1] == pose[1] and path[i][0] == pose[0]: 
        theta = pose[2] 
    else: 
        theta = equiv(np.arctan2(path[i][1] - pose[1], path[i][0] - pose[0])) 
        gpg.turn_degrees(-(conv[0]*np.degrees(theta - equiv(pose[2])) + conv[1])) 
     
 
    if path[i][1] - pose[1] != 0: 
        gpg.drive_cm(conv[0]*abs(path[i][1] - pose[1])*tess_grd_size*100 + conv[1]) 
    else: 
        gpg.drive_cm(conv[0]*abs(path[i][0] - pose[0])*tess_grd_size*100 + conv[1]) 
     
    pose = [path[i][0], path[i][1], theta] 
 

  



H. Physical Robot Setup 

 


